Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38699325

RESUMEN

Epidemiologic studies demonstrate an association between early-life respiratory illnesses (RIs) and the development of childhood asthma. However, it remains uncertain whether these children are predisposed to both conditions or if early-life RIs induce alterations in airway function, immune responses, or other human biology that contribute to the development of asthma. Puerto Rican children experience a disproportionate burden of early-life RIs and asthma, making them an important population for investigating this complex interplay. PRIMERO, the Puerto Rican Infant Metagenomics and Epidemiologic Study of Respiratory Outcomes , recruited pregnant women and their newborns to investigate how the airways develop in early life among infants exposed to different viral RIs, and will thus provide a critical understanding of childhood asthma development. As the first asthma birth cohort in Puerto Rico, PRIMERO will prospectively follow 2,100 term healthy infants. Collected samples include post-term maternal peripheral blood, infant cord blood, the child's peripheral blood at the year two visit, and the child's nasal airway epithelium, collected using minimally invasive nasal swabs, at birth, during RIs over the first two years of life, and at annual healthy visits until age five. Herein, we describe the study's design, population, recruitment strategy, study visits and procedures, and primary outcomes.

2.
Nat Commun ; 15(1): 3900, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724552

RESUMEN

By incompletely understood mechanisms, type 2 (T2) inflammation present in the airways of severe asthmatics drives the formation of pathologic mucus which leads to airway mucus plugging. Here we investigate the molecular role and clinical significance of intelectin-1 (ITLN-1) in the development of pathologic airway mucus in asthma. Through analyses of human airway epithelial cells we find that ITLN1 gene expression is highly induced by interleukin-13 (IL-13) in a subset of metaplastic MUC5AC+ mucus secretory cells, and that ITLN-1 protein is a secreted component of IL-13-induced mucus. Additionally, we find ITLN-1 protein binds the C-terminus of the MUC5AC mucin and that its deletion in airway epithelial cells partially reverses IL-13-induced mucostasis. Through analysis of nasal airway epithelial brushings, we find that ITLN1 is highly expressed in T2-high asthmatics, when compared to T2-low children. Furthermore, we demonstrate that both ITLN-1 gene expression and protein levels are significantly reduced by a common genetic variant that is associated with protection from the formation of mucus plugs in T2-high asthma. This work identifies an important biomarker and targetable pathways for the treatment of mucus obstruction in asthma.


Asunto(s)
Asma , Proteínas Ligadas a GPI , Interleucina-13 , Lectinas , Mucina 5AC , Moco , Niño , Humanos , Asma/genética , Asma/metabolismo , Citocinas , Células Epiteliales/metabolismo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Lectinas/genética , Lectinas/metabolismo , Mucina 5AC/genética , Mucina 5AC/metabolismo , Moco/metabolismo , Mucosa Nasal/metabolismo , Polimorfismo Genético , Mucosa Respiratoria/metabolismo
3.
Nat Genet ; 55(6): 952-963, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37231098

RESUMEN

We explored ancestry-related differences in the genetic architecture of whole-blood gene expression using whole-genome and RNA sequencing data from 2,733 African Americans, Puerto Ricans and Mexican Americans. We found that heritability of gene expression significantly increased with greater proportions of African genetic ancestry and decreased with higher proportions of Indigenous American ancestry, reflecting the relationship between heterozygosity and genetic variance. Among heritable protein-coding genes, the prevalence of ancestry-specific expression quantitative trait loci (anc-eQTLs) was 30% in African ancestry and 8% for Indigenous American ancestry segments. Most anc-eQTLs (89%) were driven by population differences in allele frequency. Transcriptome-wide association analyses of multi-ancestry summary statistics for 28 traits identified 79% more gene-trait associations using transcriptome prediction models trained in our admixed population than models trained using data from the Genotype-Tissue Expression project. Our study highlights the importance of measuring gene expression across large and ancestrally diverse populations for enabling new discoveries and reducing disparities.


Asunto(s)
Negro o Afroamericano , Hispánicos o Latinos , Americanos Mexicanos , Humanos , Negro o Afroamericano/genética , Estudio de Asociación del Genoma Completo , Hispánicos o Latinos/genética , Americanos Mexicanos/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Transcriptoma
5.
J Allergy Clin Immunol ; 151(6): 1503-1512, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36796456

RESUMEN

BACKGROUND: Albuterol is the drug most widely used as asthma treatment among African Americans despite having a lower bronchodilator drug response (BDR) than other populations. Although BDR is affected by gene and environmental factors, the influence of DNA methylation is unknown. OBJECTIVE: This study aimed to identify epigenetic markers in whole blood associated with BDR, study their functional consequences by multi-omic integration, and assess their clinical applicability in admixed populations with a high asthma burden. METHODS: We studied 414 children and young adults (8-21 years old) with asthma in a discovery and replication design. We performed an epigenome-wide association study on 221 African Americans and replicated the results on 193 Latinos. Functional consequences were assessed by integrating epigenomics with genomics, transcriptomics, and environmental exposure data. Machine learning was used to develop a panel of epigenetic markers to classify treatment response. RESULTS: We identified 5 differentially methylated regions and 2 CpGs genome-wide significantly associated with BDR in African Americans located in FGL2 (cg08241295, P = 6.8 × 10-9) and DNASE2 (cg15341340, P = 7.8 × 10-8), which were regulated by genetic variation and/or associated with gene expression of nearby genes (false discovery rate < 0.05). The CpG cg15341340 was replicated in Latinos (P = 3.5 × 10-3). Moreover, a panel of 70 CpGs showed good classification for those with response and nonresponse to albuterol therapy in African American and Latino children (area under the receiver operating characteristic curve for training, 0.99; for validation, 0.70-0.71). The DNA methylation model showed similar discrimination as clinical predictors (P > .05). CONCLUSIONS: We report novel associations of epigenetic markers with BDR in pediatric asthma and demonstrate for the first time the applicability of pharmacoepigenetics in precision medicine of respiratory diseases.


Asunto(s)
Asma , Broncodilatadores , Niño , Adulto Joven , Humanos , Adolescente , Adulto , Broncodilatadores/uso terapéutico , Epigenoma , Multiómica , Asma/tratamiento farmacológico , Asma/genética , Asma/metabolismo , Albuterol/uso terapéutico , Metilación de ADN , Estudio de Asociación del Genoma Completo , Fibrinógeno/metabolismo
6.
Clin Epigenetics ; 14(1): 9, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033200

RESUMEN

INTRODUCTION: DNA methylation studies have associated methylation levels at different CpG sites or genomic regions with lung function. Moreover, genetic ancestry has been associated with lung function in Latinos. However, no epigenome-wide association study (EWAS) of lung function has been performed in this population. Here, we aimed to identify DNA methylation patterns associated with lung function in pediatric asthma among Latinos. RESULTS: We conducted an EWAS in whole blood from 250 Puerto Rican and 148 Mexican American children and young adults with asthma. A total of five CpGs exceeded the genome-wide significance threshold of p = 1.17 × 10-7 in the combined analyses from Puerto Ricans and Mexican Americans: cg06035600 (MAP3K6, p = 6.13 × 10-8) showed significant association with pre-bronchodilator Tiffeneau-Pinelli index, the probes cg00914963 (TBC1D16, p = 1.04 × 10-7), cg16405908 (MRGPRE, p = 2.05 × 10-8), and cg07428101 (MUC2, p = 5.02 × 10-9) were associated with post-bronchodilator forced vital capacity (FVC), and cg20515679 (KCNJ6) with post-bronchodilator Tiffeneau-Pinelli index (p = 1.13 × 10-8). However, these markers did not show significant associations in publicly available data from Europeans (p > 0.05). A methylation quantitative trait loci analysis revealed that methylation levels at these CpG sites were regulated by genetic variation in Latinos and the Biobank-based Integrative Omics Studies (BIOS) consortium. Additionally, two differentially methylated regions in REXOC and AURKC were associated with pre-bronchodilator Tiffeneau-Pinelli index (adjusted p < 0.05) in Puerto Ricans and Mexican Americans. Moreover, we replicated some of the previous differentially methylated signals associated with lung function in non-Latino populations. CONCLUSIONS: We replicated previous associations of epigenetic markers with lung function in whole blood and identified novel population-specific associations shared among Latino subgroups.


Asunto(s)
Asma/genética , Asma/fisiopatología , Metilación de ADN/genética , Epigénesis Genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Hispánicos o Latinos/genética , Adolescente , Adulto , Niño , Epigenoma , Femenino , Humanos , Masculino , Estados Unidos/epidemiología , Adulto Joven
8.
Chest ; 162(1): 184-195, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35033507

RESUMEN

BACKGROUND: Variation in genetic ancestry among genetically admixed racial and ethnic groups may influence the fit of guideline-recommended spirometry reference equations, which rely on self-identified race and ethnicity. RESEARCH QUESTION: What is the influence of genetic ancestry on the fit of race- and ethnicity-based spirometry reference equations in populations of genetically admixed children? STUDY DESIGN AND METHODS: Cross-sectional fit of guideline-recommended race- and ethnicity-based spirometry reference equations was evaluated in healthy control participants from case-control studies of asthma. Anthropometry, blood samples, and spirometric measurements were obtained for 599 genetically admixed children 8 to 21 years of age. Genetic ancestry was estimated using genome-wide genotype data. Equation fit, measured as a mean z score, was assessed in self-identified African American (n = 275) and Puerto Rican (n = 324) children as well as genetic ancestry-defined strata of each population. RESULTS: For African American children, African American-derived equations fit for predicting FEV1 and FVC in those with an African ancestry more than the median (81.4%-100.0%), whereas composite equations for "other/mixed" populations fit for predicting FEV1 and FVC in those with African ancestry at or less than the median (30.7%-81.3%). For Puerto Rican children with African ancestry at or less than the median (6.4%-21.3%), White-derived equations fit both FEV1 and FVC, whereas for those with African ancestry more than the median (21.4%-87.5%), White-derived equations fit the FEV1 and the composite equations fit the FVC. INTERPRETATION: Guideline-recommended spirometry reference equations yielded biased estimates of lung function in genetically admixed children with high variation of African ancestry. Spirometry could benefit from reference equations that incorporate genetic ancestry, either for more precise application of the current equations or the derivation and use of new equations.


Asunto(s)
Etnicidad , Niño , Estudios Transversales , Etnicidad/genética , Volumen Espiratorio Forzado , Humanos , Valores de Referencia , Espirometría , Capacidad Vital
9.
J Allergy Clin Immunol ; 148(5): 1324-1331.e12, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34536416

RESUMEN

BACKGROUND: Asthma is a heterogeneous disease. Clinical blood parameters differ by race/ethnicity and are used to distinguish asthma subtypes and inform therapies. Differences in subtypes may explain population-specific trends in asthma outcomes. However, these differences in racial/ethnic minority pediatric populations are unclear. OBJECTIVE: We investigated the association of blood parameters and asthma subtypes with asthma outcomes and examined population-specific eligibility for biologic therapies in minority pediatric populations. METHODS: Using data from 2 asthma case-control studies of pediatric minority populations, we performed case-control (N = 3738) and case-only (N = 2743) logistic regressions to quantify the association of blood parameters and asthma subtypes with asthma outcomes. Heterogeneity of these associations was tested using an interaction term between race/ethnicity and each exposure. Differences in therapeutic eligibility were investigated using chi-square tests. RESULTS: Race/ethnicity modified the association between total IgE and asthma exacerbations. Elevated IgE level was associated with worse asthma outcomes in Puerto Ricans. Allergic asthma was associated with worse outcomes in Mexican Americans, whereas eosinophilic asthma was associated with worse outcomes in Puerto Ricans. A lower proportion of Puerto Ricans met dosing criteria for allergic asthma-directed biologic therapy than other groups. A higher proportion of Puerto Ricans qualified for eosinophilic asthma-directed biologic therapy than African Americans. CONCLUSIONS: We found population-specific associations between blood parameters and asthma subtypes with asthma outcomes. Our findings suggest that eligibility for asthma biologic therapies differs across pediatric racial/ethnic populations. These findings call for more studies in diverse populations for equitable treatment of minority patients with asthma.


Asunto(s)
Antiasmáticos/uso terapéutico , Asma/epidemiología , Productos Biológicos/uso terapéutico , Etnicidad , Grupos Minoritarios , Grupos Raciales , Adolescente , Asma/terapia , Estudios de Casos y Controles , Niño , Determinación de la Elegibilidad , Femenino , Humanos , Inmunoglobulina E/sangre , Masculino , Fenotipo , Estados Unidos/epidemiología , Adulto Joven
10.
Ethn Dis ; 31(1): 77-88, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33519158

RESUMEN

Objective: Asthma is the most common chronic disease in children. Short-acting bronchodilator medications are the most commonly prescribed asthma treatment worldwide, regardless of disease severity. Puerto Rican children display the highest asthma morbidity and mortality of any US population. Alarmingly, Puerto Rican children with asthma display poor bronchodilator drug response (BDR). Reduced BDR may explain, in part, the increased asthma morbidity and mortality observed in Puerto Rican children with asthma. Gene-environment interactions may explain a portion of the heritability of BDR. We aimed to identify gene-environment interactions associated with BDR in Puerto Rican children with asthma. Setting: Genetic, environmental, and psycho-social data from the Genes-environments and Admixture in Latino Americans (GALA II) case-control study. Participants: Our discovery dataset consisted of 658 Puerto Rican children with asthma; our replication dataset consisted of 514 Mexican American children with asthma. Main Outcome Measures: We assessed the association of pairwise interaction models with BDR using ViSEN (Visualization of Statistical Epistasis Networks). Results: We identified a non-linear interaction between Native American genetic ancestry and air pollution significantly associated with BDR in Puerto Rican children with asthma. This interaction was robust to adjustment for age and sex but was not significantly associated with BDR in our replication population. Conclusions: Decreased Native American ancestry coupled with increased air pollution exposure was associated with increased BDR in Puerto Rican children with asthma. Our study acknowledges BDR's phenotypic complexity, and emphasizes the importance of integrating social, environmental, and biological data to further our understanding of complex disease.


Asunto(s)
Contaminación del Aire , Asma , Asma/tratamiento farmacológico , Asma/genética , Broncodilatadores/uso terapéutico , Estudios de Casos y Controles , Niño , Hispánicos o Latinos/genética , Humanos , Puerto Rico , Indio Americano o Nativo de Alaska
12.
Genet Epidemiol ; 45(2): 190-208, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32989782

RESUMEN

Bronchodilator (BD) drugs are commonly prescribed for treatment and management of obstructive lung function present with diseases such as asthma. Administration of BD medication can partially or fully restore lung function as measured by pulmonary function tests. The genetics of baseline lung function measures taken before BD medication have been extensively studied, and the genetics of the BD response itself have received some attention. However, few studies have focused on the genetics of post-BD lung function. To address this gap, we analyzed lung function phenotypes in 1103 subjects from the Study of African Americans, Asthma, Genes, and Environment, a pediatric asthma case-control cohort, using an integrative genomic analysis approach that combined genotype, locus-specific genetic ancestry, and functional annotation information. We integrated genome-wide association study (GWAS) results with an admixture mapping scan of three pulmonary function tests (forced expiratory volume in 1 s [FEV1 ], forced vital capacity [FVC], and FEV1 /FVC) taken before and after albuterol BD administration on the same subjects, yielding six traits. We identified 18 GWAS loci, and five additional loci from admixture mapping, spanning several known and novel lung function candidate genes. Most loci identified via admixture mapping exhibited wide variation in minor allele frequency across genotyped global populations. Functional fine-mapping revealed an enrichment of epigenetic annotations from peripheral blood mononuclear cells, fetal lung tissue, and lung fibroblasts. Our results point to three novel potential genetic drivers of pre- and post-BD lung function: ADAMTS1, RAD54B, and EGLN3.


Asunto(s)
Asma , Estudio de Asociación del Genoma Completo , Negro o Afroamericano/genética , Asma/tratamiento farmacológico , Asma/genética , Niño , Volumen Espiratorio Forzado , Genómica , Humanos , Leucocitos Mononucleares , Pulmón , Polimorfismo de Nucleótido Simple
13.
PLoS Genet ; 16(8): e1008927, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32797036

RESUMEN

The genetic control of gene expression is a core component of human physiology. For the past several years, transcriptome-wide association studies have leveraged large datasets of linked genotype and RNA sequencing information to create a powerful gene-based test of association that has been used in dozens of studies. While numerous discoveries have been made, the populations in the training data are overwhelmingly of European descent, and little is known about the generalizability of these models to other populations. Here, we test for cross-population generalizability of gene expression prediction models using a dataset of African American individuals with RNA-Seq data in whole blood. We find that the default models trained in large datasets such as GTEx and DGN fare poorly in African Americans, with a notable reduction in prediction accuracy when compared to European Americans. We replicate these limitations in cross-population generalizability using the five populations in the GEUVADIS dataset. Via realistic simulations of both populations and gene expression, we show that accurate cross-population generalizability of transcriptome prediction only arises when eQTL architecture is substantially shared across populations. In contrast, models with non-identical eQTLs showed patterns similar to real-world data. Therefore, generating RNA-Seq data in diverse populations is a critical step towards multi-ethnic utility of gene expression prediction.


Asunto(s)
Negro o Afroamericano/genética , Estudio de Asociación del Genoma Completo/métodos , Modelos Genéticos , Transcriptoma , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/normas , Estudio de Asociación del Genoma Completo/normas , Humanos , Sitios de Carácter Cuantitativo , RNA-Seq/métodos , RNA-Seq/normas , Estándares de Referencia
14.
PLoS One ; 15(5): e0231782, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32369487

RESUMEN

RATIONALE: Severe early-life respiratory illnesses, particularly those caused by respiratory syncytial virus (RSV) and human rhinovirus (HRV), are strongly associated with the development of asthma in children. Puerto Rican children in particular have a strikingly high asthma burden. However, prior studies of the potential associations between early-life respiratory illnesses and asthma in Puerto Rican and other minority populations have been limited. OBJECTIVES: We sought to determine whether early-life respiratory illness was associated with asthma in Puerto Rican, Mexican American, and African American children. METHODS: Using a logistic regression analysis, we examined the association between early-life respiratory illnesses (report of upper respiratory infection (URI), pneumonia, bronchitis, and bronchiolitis/RSV) within the first two years of life and physician-diagnosed asthma after the age of two in a large cohort of Puerto Rican, Mexican American, and African American children. MEASUREMENTS AND MAIN RESULTS: While early-life respiratory illnesses were associated with greater asthma odds in Puerto Ricans, Mexican Americans, and African Americans, these associations were stronger among Puerto Rican children. Specifically, in Puerto Ricans, the odds was 6.15 (95% CI: 4.21-9.05) if the child reported at least one of the following respiratory illness: URI, pneumonia, bronchitis or bronchiolitis. The odds were also higher in Puerto Ricans when considering these conditions separately. CONCLUSIONS: We observed population-specific associations between early-life respiratory illnesses and asthma, which were especially significant and stronger in Puerto Ricans. Taken together with the known high burden of RSV in Puerto Rico, our results may help explain the high burden of asthma in Puerto Ricans.


Asunto(s)
Asma/epidemiología , Negro o Afroamericano/estadística & datos numéricos , Hispánicos o Latinos/estadística & datos numéricos , Americanos Mexicanos/estadística & datos numéricos , Infecciones del Sistema Respiratorio/epidemiología , Adolescente , Asma/etiología , Niño , Preescolar , Femenino , Humanos , Lactante , Modelos Logísticos , Masculino , Infecciones del Sistema Respiratorio/complicaciones , Infecciones del Sistema Respiratorio/virología , Estados Unidos/etnología , Adulto Joven
15.
Am J Respir Cell Mol Biol ; 63(2): 172-184, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32275839

RESUMEN

Air pollution particulate matter <2.5 µm (PM2.5) exposure is associated with poor respiratory outcomes. Mechanisms underlying PM2.5-induced lung pathobiology are poorly understood but likely involve cellular and molecular changes to the airway epithelium. We extracted and chemically characterized the organic and water-soluble components of air pollution PM2.5 samples, then determined the whole transcriptome response of human nasal mucociliary airway epithelial cultures to a dose series of PM2.5 extracts. We found that PM2.5 organic extract (OE), but not water-soluble extract, elicited a potent, dose-dependent transcriptomic response from the mucociliary epithelium. Exposure to a moderate OE dose modified the expression of 424 genes, including activation of aryl hydrocarbon receptor signaling and an IL-1 inflammatory program. We generated an OE-response gene network defined by eight functional enrichment groups, which exhibited high connectivity through CYP1A1, IL1A, and IL1B. This OE exposure also robustly activated a mucus secretory expression program (>100 genes), which included transcriptional drivers of mucus metaplasia (SPDEF and FOXA3). Exposure to a higher OE dose modified the expression of 1,240 genes and further exacerbated expression responses observed at the moderate dose, including the mucus secretory program. Moreover, the higher OE dose significantly increased the MUC5AC/MUC5B gel-forming mucin expression ratio and strongly downregulated ciliated cell expression programs, including key ciliating cell transcription factors (e.g., FOXJ1 and MCIDAS). Chronic OE stimulation induced mucus metaplasia-like remodeling characterized by increases in MUC5AC+ secretory cells and MUC5AC mucus secretions. This epithelial remodeling may underlie poor respiratory outcomes associated with high PM2.5 exposure.


Asunto(s)
Mucosa Nasal/diagnóstico por imagen , Material Particulado/efectos adversos , Mucosa Respiratoria/efectos de los fármacos , Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , Asma/inducido químicamente , Asma/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Mucina 5AC/genética , Mucina 5B/genética , Factores de Transcripción/genética
16.
Clin Pharmacol Ther ; 106(5): 1133-1140, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31209858

RESUMEN

American Thoracic Society guidelines recommend inhaled corticosteroid (ICS) therapy, plus a short-acting bronchodilator, in patients with persistent asthma. However, few prior studies have examined the efficacy of this combination in children of all racial/ethnic groups. We evaluated the association between ICS use and bronchodilator response (BDR) in three pediatric populations with persistent asthma (656 African American, 916 Puerto Rican, and 398 Mexican American children). The association was assessed using multivariable quantile regression. After adjusting for baseline forced expiratory volume in one second and use of controller medications, ICS use was significantly associated with increased BDR only among Mexican Americans (1.56%, P = 0.028) but not African Americans (0.49%, P = 0.426) or Puerto Ricans (0.16%, P = 0.813). Our results demonstrate that ICS augmentation is disproportionate across racial/ethnic groups, where improved BDR is observed in Mexican Americans only. This study highlights the complexities of treating asthma in children, and reinforces the importance of investigating the influence of race/ethnicity on pharmacological response.


Asunto(s)
Corticoesteroides/uso terapéutico , Asma/tratamiento farmacológico , Asma/etnología , Broncodilatadores/uso terapéutico , Grupos Raciales/estadística & datos numéricos , Administración por Inhalación , Adolescente , Corticoesteroides/administración & dosificación , Negro o Afroamericano/estadística & datos numéricos , Broncodilatadores/farmacología , Niño , Femenino , Volumen Espiratorio Forzado , Hispánicos o Latinos/estadística & datos numéricos , Humanos , Masculino , Americanos Mexicanos/estadística & datos numéricos , Puerto Rico/etnología , Estados Unidos/epidemiología
17.
J Allergy Clin Immunol ; 144(3): 839-845.e10, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31247265

RESUMEN

BACKGROUND: Telomere length (TL) can serve as a potential biomarker for conditions associated with chronic oxidative stress and inflammation, such as asthma. Air pollution can induce oxidative stress. Understanding the relationship between TL, asthma, and air pollution is important for identifying risk factors contributing to unhealthy aging in children. OBJECTIVES: We sought to investigate associations between exposures to ambient air pollutants and TL in African American children and adolescents and to examine whether African ancestry, asthma status, and steroid medication use alter the association. METHODS: Linear regression was used to examine associations between absolute telomere length (aTL) and estimated annual average residential ozone (O3) and fine particulate matter with a diameter of 2.5 µm or less (PM2.5) exposures in a cross-sectional analysis of 1072 children in an existing asthma case-control study. African ancestry, asthma status, and use of steroid medications were examined as effect modifiers. RESULTS: Participants' aTLs were measured by using quantitative PCR. A 1-ppb and 1 µg/m3 increase in annual average exposure to O3 and PM2.5 were associated with a decrease in aTL of 37.1 kilo-base pair (kb; 95% CI, -66.7 to -7.4 kb) and 57.1 kb (95% CI, -118.1 to 3.9 kb), respectively. African ancestry and asthma were not effect modifiers; however, exposure to steroid medications modified the relationships between TL and pollutants. Past-year exposure to O3 and PM2.5 was associated with shorter TLs in patients without steroid use. CONCLUSION: Exposure to air pollution was associated with shorter TLs in nonasthmatic children and adolescents. This was not the case for asthmatic children as a group, but those receiving steroid medication had less shortening than those not using steroids. Reduced exposure to air pollution in childhood might help to preserve TL.


Asunto(s)
Contaminación del Aire , Asma/tratamiento farmacológico , Negro o Afroamericano , Exposición a Riesgos Ambientales , Esteroides/uso terapéutico , Telómero , Adolescente , Adulto , Contaminantes Atmosféricos , Asma/etnología , Niño , Humanos , Ozono , Material Particulado , Adulto Joven
18.
Sci Rep ; 8(1): 13265, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30185882

RESUMEN

Telomere length (TL) is associated with numerous disease states and is affected by genetic and environmental factors. However, TL has been mostly studied in adult populations of European or Asian ancestry. These studies have identified 34 TL-associated genetic variants recently used as genetic proxies for TL. The generalizability of these associations to pediatric populations and racially diverse populations, specifically of African ancestry, remains unclear. Furthermore, six novel variants associated with TL in a population of European children have been identified but not validated. We measured TL from whole blood samples of 492 healthy African American youth (children and adolescents between 8 and 20 years old) and performed the first genome-wide association study of TL in this population. We were unable to replicate neither the 34 reported genetic associations found in adults nor the six genetic associations found in European children. However, we discovered a novel genome-wide significant association between TL and rs1483898 on chromosome 14. Our results underscore the importance of examining genetic associations with TL in diverse pediatric populations such as African Americans.


Asunto(s)
Negro o Afroamericano/genética , Homeostasis del Telómero/genética , Telómero/genética , Adolescente , Pueblo Asiatico/genética , Niño , Femenino , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Telómero/fisiología , Población Blanca/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...